Esters Derived from Vanillin and Vanillal and Aromatic and Functionalized Aliphatic Carboxylic Acids

E.A. Dikusar and N.G. Kozlov

Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, ul. Surganova 13, Minsk, 220072 Belarus e-mail: loc@ifoch.bas-net.by

Received October 6, 2004

Abstract—Reactions of vanillin and vanillal with aromatic and functionally substituted aliphatic carboxylic acid chlorides in the presence of pyridine afforded the corresponding previously unknown esters.

Natural phytogenic aromatic hydroxy aldehydes, such as vanillin (4-hydroxy-3-methoxybenzaldehyde, Ia) and its nearest homolog vanillal (3-ethoxy-4hydroxybenzaldehyde, Ib), are widely used in food and fragrance industries [1, 2]. Annual production of these compounds exceeds 15000 tons [3, 4]. In addition, vanillin, vanillal, and their derivatives are convenient synthons for the preparation of biologically active compounds [5, 6].

The goal of the present work was to synthesize new esters derived from vanillin and vanillal, on the one hand, and aromatic and functionally substituted aliphatic carboxylic acids, on the other. Esters IIIa-IIIu and IVa-IVe were obtained by reactions of compounds Ia and Ib with the corresponding acid chlorides II in dry methylene chloride in the presence of pyridine. Chlorides derived from the following carboxylic acids were used: capric, stearic, acrylic, methacrylic, oleic,

Illa-Illu, IVa-IVe

III, R = Me, $R' = C_9H_{19}$ (a), $C_{17}H_{35}$ (b), $CH_2=CH$ (c), CH₂=C(Me) (d), *cis*-Me(CH₂)₇CH=CH(CH₂)₇ (e), Ph (f), $p-\text{MeC}_6\text{H}_4$ (g), PhCH₂ (h), PhCH(Me)CH₂ (i), trans-PhCH=CH (j), p-MeC₆H₄O(CH₂)₂ (k), XCO(CH₂)₂ (X = 2-MeO-4-OCHC₆H₃O) (l), o-ClC₆H₄ (m), p-ClC₆H₄ (n), o_{p} -Cl₂C₆H₃ (**o**), o_{p} -Cl₂C₆H₃OCH₂ (**p**), BrCH₂ (**q**), PhCHBrCHBr (\mathbf{r}), p-BrC₆H₄ (\mathbf{s}), m-O₂NC₆H₄ (\mathbf{t}), $p-O_2NC_6H_4$ (u); IV, R = Et, R' = Ph (a), $p-MeC_6H_4$ (b), $XCO(CH_2)_2$ (X = 2-EtO-4-OCHC₆H₃O) (c), *o*-ClC₆H₄ (d), p-ClC₆H₄ (e).

benzoic, p-toluic, phenylacetic, 2-phenylbutyric, cinnamic, 2-(p-tolyloxy)propionic, succinic, o-chlorobenzoic, p-chlorobenzoic, o,p-dichlorobenzoic, o,p-dichlorophenoxyacetic, bromoacetic, 2,3-dibromo-3phenylpropionic, p-bromobenzoic, m-nitrobenzoic, and p-nitrobenzoic. The yields of esters IIIa-IIIu and **IVa–IVe** were 80 to 90%.

Compounds IIIa-IIIu and IVa-IVe contain aldehyde and ester moieties, methoxy or ethoxy group, and substituents in the acid fragment. Therefore, they can be involved in further chemical transformations. Esters IIIa-IIIu and IVa-IVe attract interest as potential antimicrobial and radioprotecting agents [7, 8]. The structure of products IIIa-IIIu and IVa-IVe was confirmed by the data of elemental analysis, determination of their molecular weights by cryoscopy, and ¹H NMR, IR, and UV spectroscopy. According to the ¹H NMR data, their purity was $98 \pm 1\%$.

EXPERIMENTAL

The IR spectra were recorded on a Nicolet Protege-460 Fourier spectrometer from samples prepared as thin films or KBr pellets. The UV spectra were measured on a Specord UV-Vis spectrophotometer from 10⁻⁴ M solutions in methanol. The ¹H NMR spectra were obtained on a Tesla BS-587A instrument (100 MHz) from 5% solutions in CDCl₃; the chemical shifts were measured relative to octamethylcyclotetrasiloxane as internal reference. The molecular weights were determined by cryoscopy in benzene. Carboxylic acid chlorides II were prepared by treatment of the corresponding acid with 1.5 equiv of thionyl chloride in benzene under reflux.

Esters IIIa-IIIu and IVa-IVe (general procedure). Hydroxy aldehyde Ia or Ib, 0.2 mol, was dissolved in 500 ml of dry methylene chloride, 0.25 mol of anhydrous pyridine was added, and 0.2 mol of the corresponding carboxylic acid chloride \mathbf{II} (0.1 mol of succinoyl dichloride) was added in small portions under continuous shaking. The mixture was heated for 1 h under reflux, the solvent was distilled off on a water bath, the residue was dissolved in 500 ml of benzene, and the benzene solution was washed with three portions of water and three portions of a 5% solution of sodium hydrogen carbonate and dried over calcium chloride. The solvent was distilled off, and the residue was recrystallized from benzene-hexane or distilled under reduced pressure. The solvents, methylene chloride and benzene, may be reused after distillation over P₂O₅ through a Vigreaux column.

4-Formyl-2-methoxyphenyl decanoate (IIIa). Yield 86%, mp 35–36°C. IR spectrum, v, cm⁻¹: 3067, 3050, 3014 (C–H_{arom}); 1764, 1720, 1695, 1681 (C=O); 1601, 1589, 1510, 1420, 1464, 1383 (C–C_{arom}); 1473 (CH₂); 921, 884, 841, 783, 745, 725, 714 (δ C–H_{arom}). UV spectrum, λ_{max} , nm (ϵ): 206 (8000), 224 (15000), 260 (7000), 310 (3000). ¹H NMR spectrum, δ , ppm: 0.89 t (CH₃, ³*J* = 5.5 Hz), 1.20–1.50 m [(CH₂)₆], 1.82 t (CH₂, ³*J* = 5.5 Hz), 2.60 t (CH₂C=O, ³*J* = 7.4 Hz), 3.89 s (CH₃O), 7.10–7.55 m (C₆H₃), 9.94 s (CHO). Found, %: C 70.91; H 8.67. *M* 291.8. C₁₈H₂₆O₄. Calculated, %: C 70.56; H 8.55. *M* 306.4.

4-Formyl-2-methoxyphenyl octadecanoate (IIIb). Yield 89%, mp 32–33°C. IR spectrum, v, cm⁻¹: 3110, 3072, 3014 (C–H_{arom}); 1765, 1704 (C=O); 1601, 1504, 1466, 1422, 1390 (C–C_{arom}); 1475 (CH₂); 964, 915, 865, 835, 780, 734, 645, 585 (δC–H_{arom}). UV spectrum, λ_{max} , nm (ε): 205 (8000), 223 (14000), 260 (6000), 310 (3000). ¹H NMR spectrum, δ, ppm: 0.88 t (CH₃, ³J = 4.7 Hz), 1.15–2.05 m [(CH₂)₁₅], 2.67 t (CH₂C=O, ³J = 7.3 Hz), 3.89 s (CH₃O), 7.10–7.60 m (C₆H₃), 9.94 s (CHO). Found, %: C 75.03; H 10.24. *M* 392.1. C₂₆H₄₂O₄. Calculated, %: C 74.60; H 10.11. *M* 418.6.

4-Formyl-2-methoxyphenyl acrylate (IIIc). Yield 80%, bp 140–141°C (0.5 mm), $d_{20}^{20} = 1.3428$, $n_D^{20} = 1.5555$. IR spectrum, v, cm⁻¹: 3110, 3080, 3045, 3010 (=C–H, C–H_{arom}); 1767, 1751, 1701 (C=O); 1640 (C=C); 1601, 1503, 1466, 1423, 1404, 1391 (C–C_{arom}); 920, 895, 875, 835, 800, 780, 734 (δ C–H_{arom}). UV spectrum, λ_{max} , nm (ϵ): 208 (12000), 219 (18000), 254 (9000), 303 (4000). ¹H NMR spectrum, δ , ppm: 3.90 s (CH₃O), 5.80–6.85 m (CH=CH₂), 7.15–7.65 m (C₆H₃),

9.96 s (CHO). Found, %: C 64.32; H 5.09. *M* 193.4. C₁₁H₁₀O₄. Calculated, %: C 64.07; H 4.89. *M* 206.2.

4-Formyl-2-methoxyphenyl methacrylate (IIId). Yield 82%, mp 46–47°C. IR spectrum, v, cm⁻¹: 3100, 3080, 3040, 3015 (=C–H, C–H_{arom}); 1768, 1750, 1700 (C=O); 1645 (C=C); 1600, 1505, 1465, 1423, 1405, 1390 (C–C_{arom}); 920, 895, 875, 830, 800, 780, 735 (δ C–H_{arom}). UV spectrum, λ_{max} , nm (ϵ): 207 (13000), 220 (18000), 255 (9000), 300 (4000). ¹H NMR spectrum, δ , ppm: 2.08 t (CH₃, ³*J* = 0.9 Hz), 3.90 s (CH₃O), 5.77 t (=CH, ³*J* = 1.1 Hz), 6.37 t (=CH, ³*J* = 0.9 Hz), 7.15–7.65 m (C₆H₃), 9.93 s (CHO). Found, %: C 65.88; H 5.67. *M* 208.5. C₁₂H₁₂O₄. Calculated, %: C 65.45; H 5.49. *M* 220.2.

4-Formyl-2-methoxyphenyl (**Z**)-**8-octadecenoate** (**IIIe**). Yield 88%, $d_{20}^{20} = 1.1563$, $n_D^{20} = 1.5040$. IR spectrum, v, cm⁻¹: 3080, 3040, 3015 (C–H_{arom}); 3006 (=CH); 1767, 1703 (C=O); 920, 860, 820, 785, 733 (δ C–H_{arom}). UV spectrum, λ_{max} , nm (ϵ): 202 (6000), 218 (17000), 255 (6000), 309 (3000). ¹H NMR spectrum, δ , ppm: 0.88 t (CH₃, ³J = 4.6 Hz), 1.05–2.15 m [(CH₂)₅, (CH₂)₆], 2.57 t (CH₂C=O, ³J = 6.1 Hz), 3.88 s (CH₃O), 5.35 t (2H, =CH, ³J = 4.0 Hz), 7.00–7.50 m (C₆H₃), 9.93 s (CHO). Found, %: C 75.19; H 10.02. *M* 394.7. C₂₆H₄₀O₄. Calculated, %: C 74.96; H 9.68. *M* 416.6.

4-Formyl-2-methoxyphenyl benzoate (IIIf). Yield 90%, mp 71–72°C. IR spectrum, v, cm⁻¹: 3110, 3094, 3066, 3050, 3035, 3010 (C–H_{arom}); 1734, 1695, 1681 (C=O); 1601, 1503, 1465, 1452, 1426, 1398 (Ar); 940, 872, 856, 817, 806, 734, 702, 677, 587, 550 (δ C–H_{arom}). UV spectrum, λ_{max} , nm (ϵ): 204 (23000), 220 (30000), 258 (18000), 308 (6000). ¹H NMR spectrum, δ , ppm: 3.88 s (CH₃O), 7.20–7.70 and 8.05–8.30 m (C₆H₃, C₆H₅), 9.97 s (CHO). Found, %: C 70.57; H 5.03. *M* 248.4. C₁₅H₁₂O₄. Calculated, %: C 70.31; H 4.72. *M* 256.3.

4-Formyl-2-methoxyphenyl *p*-methylbenzoate (IIIg). Yield 87%, mp 91–92°C. IR spectrum, v, cm⁻¹: 3109, 3072, 3011 (C–H_{arom}); 1736, 1701, 1686 (C=O); 1609, 1598, 1502, 1465, 1426, 1399 (C–C_{arom}); 938, 882, 870, 852, 837, 804, 782, 747, 731, 687, 645, 636, 606, 583, 548 (δC–H_{arom}). UV spectrum, λ_{max} , nm (ε): 208 (25000), 221 (25000), 253 (27000), 308 (6000). ¹H NMR spectrum, δ, ppm: 2.44 s (CH₃), 3.86 s (CH₃O), 7.15–7.55 m and 7.90–8.15 m (C₆H₃, C₆H₄), 9.95 s (CHO). Found, %: C 71.35; H 5.41. *M* 262.7. C₁₆H₁₄O₄. Calculated, %: C 71.10; H 5.22. *M* 270.3.

4-Formyl-2-methoxyphenyl phenylacetate (IIIh). Yield 89%, bp 179–180°C (0.5 mm), $d_{20}^{20} = 1.2835$, $n_{\rm D}^{20}$ = 1.5810. IR spectrum, v, cm⁻¹: 3110, 3090, 3080, 3040, 3010 (C–H_{arom}); 1764, 1700 (C=O); 1600, 1499, 1480, 1420, 1390 (C–C_{arom}); 1470 (CH₂); 900, 880, 830, 780, 720, 703, 660 (δ C–H_{arom}). UV spectrum, $\lambda_{\rm max}$, nm (ϵ): 210 (15000), 218 (16000), 256 (8000), 308 (4000). ¹H NMR spectrum, δ , ppm: 3.79 s (CH₂), 3.89 s (CH₃O), 7.10–7.50 m (C₆H₃, C₆H₅), 9.89 s (CHO). Found, %: C 71.30; H 5.44. C₁₆H₁₄O₄. *M* 260.1. Calculated, %: C 71.10; H 5.22. *M* 270.3.

4-Formyl-2-methoxyphenyl 2-phenylbutyrate (**IIIi**). Yield 85%, mp 69–70°C. IR spectrum, ν, cm⁻¹: 3113, 3080, 3061, 3040, 3025 (C–H_{arom}); 1756, 1702, 1689 (C=O); 1601, 1501, 1451, 1425, 1396, 1362 (C–C_{arom}); 1467 (CH₂); 930, 885, 843, 810, 765, 733, 700, 652 (δC–H_{arom}). UV spectrum, λ_{max} , nm (ε): 210 (16000), 255 (8000), 307 (4000). ¹H NMR spectrum, δ, ppm: 1.42 d (CH₃, ³J = 7.4 Hz), 2.88 d (CH₂, ³J = 7.4 Hz), 3.38 q (CH, ³J = 7.4 Hz), 3.79 s (CH₃O), 6.90–7.45 m (C₆H₃, C₆H₅), 9.89 s (CHO). Found, %: C 72.68; H 6.30. *M* 283.9. C₁₈H₁₈O₄. Calculated, %: C 72.47; H 6.08. *M* 298.3.

4-Formyl-2-methoxyphenyl cinnamate (III). Yield 84%, mp 59–60°C. IR spectrum, v, cm⁻¹: 3110, 3090, 3025, 3010 (C–H_{arom}); 3060 (=CH); 1738, 1725, 1700, 1688 (C=O); 1636 (C=C); 1600, 1580, 1503, 1470, 1453, 1425, 1391 (C–C_{arom}); 976, 920, 875, 863, 840, 780, 766, 740, 707, 680, 645 (δC–H_{arom}). UV spectrum, λ_{max} , nm (ε): 206 (32000), 220 (41000), 280 (38000). ¹H NMR spectrum, δ, ppm: 3.90 s (CH₃O), 7.10–7.90 m (CH=CH, C₆H₃, C₆H₅), 9.96 s (CHO). Found, %: C 72.53; H 5.19. *M* 273.0. C₁₇H₁₄O₄. Calculated, %: C 72.33; H 5.00. *M* 282.3.

4-Formyl-2-methoxyphenyl 3-(*p***-tolyloxy**)**propionate (IIIk).** Yield 81%, mp 63–64°C. IR spectrum, v, cm⁻¹: 3120, 3085, 3032, 3015 (C–H_{arom}); 1773, 1704 (C=O); 1599, 1511, 1396, 1376 (C–C_{arom}); 1462 (CH₂); 955, 910, 890, 880, 850, 827, 818, 781, 731, 590 (δ C–H_{arom}). UV spectrum, λ_{max} , nm (ϵ): 204 (15000), 221 (20000), 260 (7000), 306 (3000). ¹H NMR spectrum, δ , ppm: 2.28 s (CH₃), 3.06 t (CH₂O, ³*J* = 6.3 Hz), 3.86 s (CH₃O), 4.35 t (CH₂C=O, ³*J* = 6.3 Hz), 6.63– 7.52 m (C₆H₃, C₆H₄), 9.90 s (CHO). Found, %: C 69.02; H 5.97. *M* 303.6. C₁₈H₁₈O₅. Calculated, %: C 68.78; H 5.77. *M* 314.3.

Bis(4-formyl-2-methoxyphenyl) succinate (IIII). Yield 84%, mp 130–131°C. IR spectrum, v, cm⁻¹: 3110, 3073, 3050, 3010 (C–H_{arom}); 1756, 1704 (C=O); 1601, 1592, 1508, 1502, 1455, 1424, 1396 (C–C_{arom}); 1472 (CH₂); 944, 917, 881, 868, 836, 803, 781, 735, 671, 587 (δ C–H_{arom}). UV spectrum, λ_{max} , nm (ϵ): 204 (50000), 220 (70000), 258 (39000), 305 (15000). ¹H NMR spectrum, δ , ppm: 3.04 s [4H, (CH₂)₂], 3.84 s (6H, CH₃O), 7.12–7.55 m (6H, C₆H₃), 9.90 s (2H, CHO). Found, %: C 62.63; H 5.02. *M* 372.7. C₂₀H₁₈O₈. Calculated, %: C 62.18; H 4.70. *M* 386.4.

4-Formyl-2-methoxyphenyl *o*-chlorobenzoate (**IIIm**). Yield 86%, mp 91–92°C. IR spectrum, v, cm⁻¹: 3095, 3067, 3020 (C–H_{arom}); 1746, 1701, 1686 (C=O); 1600, 1590, 1505, 1468, 1455, 1430, 1421, 1390 (C–C_{arom}); 961, 876, 856, 814, 790, 741, 710, 683, 650, 630, 595 (δC–H_{arom}); 550 (C–Cl). UV spectrum, λ_{max} , nm (ε): 208 (27000), 219 (23000), 255 (12000), 304 (4000). ¹H NMR spectrum, δ, ppm: 3.90 s (CH₃O), 7.15–7.55 m and 8.00–8.25 m (C₆H₃, C₆H₄), 9.97 s (CHO). Found, %: C 62.24; H 4.06; Cl 11.92. *M* 281.1. C₁₅H₁₁ClO₄. Calculated, %: C 61.98; H 3.81; Cl 12.20. *M* 290.7.

4-Formyl-2-methoxyphenyl *p*-chlorobenzoate (**IIIn**). Yield 84%, mp 98–99°C. IR spectrum, v, cm⁻¹: 3105, 3093, 3074, 2999 (C–H_{arom}); 1743, 1703 (C=O); 1593, 1501, 1480, 1463, 1422, 1400, 1391 (C–C_{arom}); 958, 873, 858, 847, 817, 780, 748, 730, 678, 637, 588 (δC–H_{arom}); 522 (C–Cl). UV spectrum, λ_{max} , nm (ε): 204 (25000), 220 (21000), 252 (15000), 303 (4000). ¹H NMR spectrum, δ, ppm: 3.93 s (CH₃O), 7.20– 7.60 m and 8.05–8.25 m (C₆H₃, C₆H₄), 9.98 s (CHO). Found, %: C 62.16; H 4.01; Cl 11.98. *M* 282.4. C₁₅H₁₁ClO₄. Calculated, %: C 61.98; H 3.81; Cl 12.20. *M* 290.7.

4-Formyl-2-methoxyphenyl *o.p.***dichlorobenzoate** (**IIIo**). Yield 87%, mp 102–103°C. IR spectrum, v, cm⁻¹: 3095, 3080, 3068, 3040, 3027 (C–H_{arom}); 1746, 1705, 1689 (C=O); 1598, 1584, 1556, 1508, 1470, 1465, 1417, 1392, 1379 (C–C_{arom}); 961, 937, 900, 871, 852, 845, 835, 802, 784, 735, 675, 642, 588 (δC–H_{arom}); 559, 526 (C–Cl). UV spectrum, λ_{max}, nm (ε): 212 (32000), 255 (15000), 306 (3000). ¹H NMR spectrum, δ, ppm: 3.90 s (CH₃O), 7.00–7.65 m and 7.95–8.55 m (H_{arom}), 9.97 s (CHO). Found, %: C 55.85; H 3.28; Cl 21.56. *M* 311.8. C₁₅H₁₀Cl₂O₄. Calculated, %: C 55.41; H 3.10; Cl 21.81. *M* 325.1.

4-Formyl-2-methoxyphenyl *o*,*p*-dichlorophenoxyacetate (**IIIp**). Yield 81%, mp 115–116°C. IR spectrum, v, cm⁻¹: 3106, 3085, 3077, 3055, 3038, 3020 (C–H_{arom}); 1769, 1699, 1686 (C=O); 1600, 1504, 1680, 1425, 1396, 1380 (C–C_{arom}); 1470 (CH₂); 960, 946, 923, 862, 840, 823, 801, 751, 735, 716, 697, 680, 648, 583 (δC–H_{arom}); 557, 536 (C–Cl). UV spectrum, λ_{max} , nm (ε): 206 (27000), 222 (17000), 257 (5000), 280 (5000), 295 (5000), 308 (4000). ¹H NMR spectrum, δ, ppm: 3.87 s (CH₃O), 4.98 s (CH₂), 6.85–7.55 m (H_{arom}), 9.93 s (CHO). Found, %: C 54.49; H 3.64; Cl 19.78. *M* 334.6. C₁₆H₁₂Cl₂O₅. Calculated, %: C 54.11; H 3.41; Cl 19.96. *M* 355.2.

4-Formyl-2-methoxyphenyl bromoacetate (IIIq). Yield 83%, mp 43–44°C. IR spectrum, v, cm⁻¹: 3080, 3017 (C–H_{arom}); 1786, 1701 (C=O); 1602, 1503, 1423, 1391 (C–C_{arom}); 1466 (CH₂); 960, 920, 880, 850, 814, 781, 733, 680, 635, 590 (δC–H_{arom}); 540 (C–Br). UV spectrum, λ_{max} , nm (ε): 207 (13000), 230 (13000), 278 (8000), 308 (8000). ¹H NMR spectrum, δ, ppm: 3.90 s (CH₃O), 4.36 s (CH₂), 7.20–7.60 m (C₆H₃), 9.95 s (CHO). Found, %: C 44.17; H 3.47; Br 28.89. *M* 265.4. C₁₀H₉BrO₄. Calculated, %: C 43.98; H 3.32; Br 29.26. *M* 273.1.

4-Formyl-2-methoxyphenyl 1,2-dibromo-2-phenylpropionate (IIIr). Yield 80%, mp 82–83°C. IR spectrum, v, cm⁻¹: 3100, 3090, 3025, 3010 (C–H_{arom}); 1785, 1700 (C=O); 1599, 1510, 1396, 1375 (C–C_{arom}); 955, 910, 890, 880, 850, 826, 818, 780, 730, 590 (δC–H_{arom}), 540 (C–Br). UV spectrum, λ_{max} , nm (ε): 209 (17000), 257 (9000), 308 (6000). ¹H NMR spectrum, δ, ppm: 2.29 s (CH), 3.89 s (CH₃O), 4.95–5.55 m (CH), 6.95–8.45 m (C₆H₃, C₆H₅), 9.95 s (CHO). Found, %: C 46.32; H 3.28; Br 35.92. *M* 410.5. C₁₇H₁₄Br₂O₄. Calculated, %: C 46.19; H 3.19; Br 36.15. *M* 442.1.

4-Formyl-2-methoxyphenyl *p*-bromobenzoate (IIIs). Yield 84%, mp 108–109°C. IR spectrum, v, cm⁻¹: 3100, 3085, 3060, 3020 (C–H_{arom}); 1738, 1689 (C=O); 1587, 1507, 1483, 1468, 1421, 1399, 1381 (C– C_{arom}); 868, 844, 813, 780, 749, 677, 590 (δC–H_{arom}); 550 (C–Br). UV spectrum, λ_{max} , nm (ε): 206 (24000), 222 (21000), 255 (28000), 306 (5000). ¹H NMR spectrum, δ, ppm: 3.88 s (CH₃O), 7.20–7.75 m and 7.95– 8.15 m (C₆H₃, C₆H₄), 9.97 s (CHO). Found, %: C 54.08; H 3.45; Br 23.61. *M* 322.6. C₁₅H₁₁BrO₄. Calculated, %: C 53.76; H 3.31; Br 23.84. *M* 335.2.

4-Formyl-2-methoxyphenyl *m*-nitrobenzoate (**IIIt**). Yield 82%, mp 114–115°C. IR spectrum, v, cm⁻¹: 3110, 3084, 3030, 3005 (C–H_{arom}); 1747, 1703, 1685 (C=O); 1616, 1601, 1501, 1479, 1462, 1421, 1396 (C–C_{arom}); 1533, 1350 (NO₂); 958, 920, 909, 857, 818, 742, 732, 714, 657 (δ CH_{arom}). UV spectrum, λ_{max} , nm (ε): 220 (40000), 258 (17000), 305 (4000). ¹H NMR spectrum, δ , ppm: 3.91 s (CH₃O); 7.00– 7.90 m, 8.30–8.65 m, and 8.85–9.10 m (C₆H₃, C₆H₄); 10.00 s (CHO). Found, %: C 60.11; H 3.87; N 4.33. C₁₅H₁₁NO₆. *M* 291.8. Calculated, %: C 59.80; H 3.68; N 4.65. *M* 301.3. **4-Formyl-2-methoxyphenyl** *p*-nitrobenzoate (**IIIu**). Yield 84%, mp 189–190°C. IR spectrum, v, cm⁻¹: 3110, 3080, 3055, 3020 (C–H_{arom}); 1746, 1703, 1689 (C=O); 1600, 1501, 1460, 1420, 1399 (C–C_{arom}); 1526, 1350 (NO₂); 955, 880, 851, 820, 780, 730, 711, 645 (δC–H_{arom}). UV spectrum, λ_{max} , nm (ε): 221 (37000), 260 (20000), 305 (4000). ¹H NMR spectrum, δ, ppm: 3.91 s (CH₃O), 7.15–7.45 m and 8.35–8.45 m (C₆H₃, C₆H₄), 10.00 s (CHO). Found, %: C 60.04; H 3.80; N 4.48. *M* 294.0. C₁₅H₁₁NO₆. Calculated, %: C 59.80; H 3.68; N 4.65. *M* 301.3.

2-Ethoxy-4-formylphenyl benzoate (IVa). Yield 89%, mp 68–69°C. IR spectrum, v, cm⁻¹: 3095, 3077, 3053, 3010 (C–H_{arom}); 1739, 1697 (C=O); 1601, 1586, 1512, 1451, 1432, 1397, 1380 (C–C_{arom}); 1477 (CH₂); 938, 879, 866, 823, 798, 782, 706, 675, 582 (δ C–H_{arom}). UV spectrum, λ_{max} , nm (ϵ): 204 (21000), 222 (31000), 258 (17000), 308 (5000). ¹H NMR spectrum, δ , ppm: 1.30 t (CH₃, ³*J* = 7.4 Hz), 4.12 q (CH₂O, ³*J* = 7.4 Hz), 7.15–7.70 m and 8.10–8.35 m (C₆H₃, C₆H₅), 9.94 s (CHO). Found, %: C 71.39; H 5.37. *M* 263.4. C₁₆H₁₄O₄. Calculated, %: C 71.10; H 5.22. *M* 270.3.

2-Ethoxy-4-formylphenyl *p*-methylbenzoate (**IVb**). Yield 87%, mp 103-104°C. IR spectrum, v, cm⁻¹: 3074, 3053, 3040, 3010 (C–H_{arom}); 1732, 1698 (C=O); 1609, 1603, 1590, 1512, 1431, 1399, 1378 (C–C_{arom}); 1476 (CH₂); 870, 838, 825, 789, 777, 747, 686, 647, 636, 610, 586, 578 (δ C–H_{arom}). UV spectrum, λ_{max} , nm (ϵ): 208 (24000), 220 (24000), 253 (28000), 307 (6000). ¹H NMR spectrum, δ , ppm: 1.27 t (CH₃, ³*J* = 7.3 Hz), 2.41 s (CH₃), 4.08 q (CH₂O, ³*J* = 7.3 Hz), 7.10–7.55 m and 7.75–8.15 m (C₆H₃, C₆H₄), 9.90 s (CHO). Found, %: C 72.13; H 5.91. *M* 271.9. C₁₇H₁₆O₄. Calculated, %: C 71.82; H 5.67. *M* 284.3.

Bis(2-ethoxy-4-formylphenyl) succinate (IVc). Yield 82%, mp 114–115°C. IR spectrum, v, cm⁻¹: 3110, 3090, 3073, 3060, 3020 (C–H_{arom}); 1763, 1701 (C=O); 1601, 1500, 1435, 1414, 1393, 1371 (C–C_{arom}); 1477 (CH₂); 949, 914, 897, 875, 840, 812, 790, 671, 588, 580 (δC–H_{arom}). UV spectrum, λ_{max} , nm (ε): 205 (50000), 220 (70000), 258 (40000), 305 (14000). ¹H NMR spectrum, δ, ppm: 1.35 t (6H, CH₃, ³J = 7.4 Hz), 3.02 s [4H, (CH₂)₂], 4.08 q (4H, CH₂O, ³J = 7.4 Hz), 7.10–7.50 m (6H, C₆H₃), 9.90 s (2H, CHO). Found, %: C 64.04; H 5.57. *M* 397.6. C₂₂H₂₂O₈. Calculated, %: C 63.76; H 5.35. *M* 414.4.

2-Ethoxy-4-formylphenyl *o*-chlorobenzoate (**IVd**). Yield 85%, mp 83–84°C. IR spectrum, v, cm⁻¹: 3090, 3076, 3066, 3050, 3020 (C–H_{arom}); 1746, 1696 (C=O); 1505, 1436, 1392 (C–C_{arom}); 1470 (CH₂); 900, 878, 862, 823, 814, 783, 739, 712, 681, 655, 590 (δ C–H_{arom}); 535 (C–Cl). UV spectrum, λ_{max} , nm (ϵ): 208 (28000), 220 (23000), 255 (12000), 305 (4000). ¹H NMR spectrum, δ , ppm: 1.37 t (CH₃, ³*J* = 7.4 Hz), 4.16 q (CH₂O, ³*J* = 7.4 Hz), 7.20–7.60 m and 7.95– 8.15 m (C₆H₃, C₆H₄), 9.94 s (CHO). Found, %: C 63.27; H 4.42; Cl 11.25. *M* 295.8. C₁₆H₁₃ClO₄. Calculated, %: C 63.06; H 4.30; Cl 11.63. *M* 304.7.

2-Ethoxy-4-formylphenyl *p*-chlorobenzoate (**IVe**). Yield 83%, mp 84–85°C. IR spectrum, v, cm⁻¹: 3095, 3080, 3050, 3015 (C–H_{arom}); 1745, 1696 (C=O); 1597, 1503, 1436, 1398 (C–C_{arom}); 1470 (CH₂); 902, 872, 862, 842, 822, 744, 676, 637, 587 (C–H_{arom}); 520 (C–Cl). UV spectrum, λ_{max} , nm (ϵ): 205 (25000), 220 (20000), 252 (15000), 304 (4000). ¹H NMR spectrum, δ , ppm: 1.32 t (CH₃, ³*J* = 7.4 Hz), 4.13 q (CH₂O, ³*J* = 7.4 Hz), 7.25–7.60 m and 7.95–8.20 m (C₆H₃, C₆H₄), 9.96 s (CHO). Found, %: C 63.30; H 4.51; Cl 11.37. *M* 293.9. C₁₆H₁₃ClO₄. Calculated, %: C 63.06; H 4.30; Cl 11.63. *M* 304.7.

This study was performed under financial support by the Belarus Republican Foundation for Basic Research (project no. Kh 03-079).

REFERENCES

- 1. Shulov, L.M. and Kheifits, L.A., *Dushistye veshchestva i* poluprodukty parfyumerno-kosmeticheskogo proizvodstva (Fragrant Substances and Intermediate Products in Fragrance–Cosmetic Industry), Moscow: Agropromizdat, 1990.
- Shaikh, Y., Specialty Aroma Chemicals in Flavors and Fragrances, Carlo Stream, Illinois: Allured, 2002.
- Voitkevich, S.A. and Kheifits, L.A., Ot drevnikh blagovonii k sovremennym parfyumerii i kosmetike (From Ancient Aromas to Modern Perfumes and Cosmetics), Moscow: Pishevaya Promyshlennost', 1997.
- 4. Roen, G.M., Aroma Chemicals: 2000 and Beyond. Proc. IFEAT Int. Conf. on Essential Oils and Aromas, Amelia Island, Florida: The Ritz Carlton, Oct 29–Nov 2, 2000, p. 121.
- 5. Kozlov, N.G. and Basalaeva, L.I., *Russ. J. Org. Chem.*, 2003, vol. 39, p. 718.
- Plemenkov, V.V., Vvedenie v khimiyu prirodnykh soedinenii (Introduction to Natural Compound Chemistry), Kazan: 2001, p. 208.
- Suvorov, N.N. and Shashkov, V.S., *Khimiya i farmakologiya sredstv profilaktiki radiatsionnykh porazhenii* (Chemistry and Pharmacology of Prophylactic Agents for Radiation Damages), Moscow: Atomizdat, 1975, p. 230.